F .	
Data:	Examination number: Version: 11.06.2024 Start Year: SoSe 2025 50120
Module Name:	Materials Science and Mechanical Properties of Metals
(English):	Materials Science and Mechanical Properties of Metals
	Piermann Herst / Prof. Dr. Ing. habil
Responsible:	Biermann, Horst / Prof. DrIng. habil
	Leineweber, Andreas / Prof. Dr. rer. nat. habil.
Lecturer(s):	Weidner, Anja / DrIng. habil.
	Martin, Stefan / DrIng.
Institute(s):	Institute of Materials Engineering
	Institute of Materials Science
Duration:	1 Semester(s)
Competencies:	The student is able to relate problems from engineering practice to
	fundamental concepts from Materials Science. Further the student is
	able to relate technological aspects of processing of metallic materials
	to changes in microstructure, the mechanical parameters and further
	properties.
Contents:	The first part of the lectures deals with the basics of materials science
onicentes.	(structure, classes of materials), the main properties and the application
	of materials. The second part of the lecture deals with the
	(micro-)structure - properties relations of metallic materials. Focus is
	· ·
	given to plastic deformation and failure, particularly to following metal
	alloy types:
	Ferrous metals (plain carbon steels, high-alloyed steels, cast
	irons);
	Non-ferrous metals (e.g. copper, nickel)
	 Light metals (aluminum, titanium, magnesium)
	High-temperature alloys (superalloys, intermetallic alloys)
Literature:	Askeland, D.R., The Science and Engineering of Materials, Chapman and
	Hall, London etc.Schatt, W.; Worch, H., Werkstoffwissenschaft,
	Deutscher Verlag für Grundstoffindustrie.W. D. Callister, jr. Materials
	Science and Engineering - An Introduction, New York etc.: John Wiley &
	Sons. Inc.
	M. F. Ashby, D.R.H. Jones, Engineering materials 2, 2nd ed., Butterworth-
	Heinemann, Oxford, 1998
	James F. Shackelford, Introduction to Materials Science for Engineers,
Trunca of Tanakina	7th ed. Addison Wesley., 2009
Types of Teaching:	S1 (SS): Lectures (4 SWS)
	S1 (SS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
	Basic fundamentals of physics, chemistry and solid materials
Frequency:	yearly in the summer semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	KA [120 min]
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	KA [120 min]
Credit Points:	7
Grade:	The Grade is generated from the examination result(s) with the following
oraue.	weights (w):
Mandalaas	KA [w: 1]
Workload:	The workload is 210h. It is the result of 75h attendance and 135h self-
	studies.